ON ABSENCE OF ASYMPTOTIC STABILITY WITH RESPECT TO A PART OF THE VARIABLES

PMM Vol. 40, № 2, 1976, pp. 245-251
L. HATVANYI
(Szeged, Hungary)
(Received June 4, 1975)

We use a generalization of the Liouville formula to state a necessary condition under which the zero solution of a system of nonlinear differential equations has no attraction property with respect to any of the variables. In particular, from the basic theorem it follows that the stable unperturbed motion of a general (nonstationary) Hamiltonian system cannot be attractive with respect to any of the generalized coordinates and impulses. Properties of stability of the equilibrium position of a mathematical pendulum of variable length are investigated as an example.

1. Let the following system of differential equations of perturbed motion be given:

$$
\begin{align*}
& \mathbf{x}^{\cdot}=\mathbf{X}(t, \mathbf{x}) \quad(\mathbf{X}(t, \mathbf{0}) \equiv \mathbf{0}) \tag{1.1}\\
& \mathbf{x}=\left(\begin{array}{lll}
x_{1}, & x_{2}, & \cdots, x_{n}
\end{array}\right)^{*} \in R^{n}, \quad\|\mathbf{x}\|=\left(x_{1}^{3}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{1 / 3}
\end{align*}
$$

The vector function $\mathrm{X}(t, \mathbf{x})$ is defined and continuous together with its first order partial derivatives in $x_{i}(i=1,2, \ldots, n)$ on the set $\Gamma=\{(t, \mathbf{x}): t \geqslant 0,\|\mathbf{x}\|<$ $H\}(0<H \leqslant \infty)$ and the solutions $\mathbf{x}\left(t ; t_{0}, \mathbf{x}_{0}\right)$ are defined for all $t \geqslant t_{0}$ provided that the initial values $\mathbf{x}_{0}=\mathbf{x}\left(t_{n} ; t_{0}, \mathbf{x}_{0}\right)$ are sufficiently small in the norm.

Definition. The unperturbed motion $\mathbf{x}=\mathbf{0}$ shall be called attractive with respect to the variable $x_{j}(1 \leqslant j \leqslant n)$, if for every t_{0} there exists $\delta\left(t_{0}\right)>0$ such that $\left\|\mathbf{x}_{0}\right\|<\delta$ implies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x_{j}\left(t ; \quad t_{0}, \quad \mathbf{x}_{0}\right)=0 \tag{1.2}
\end{equation*}
$$

An unperturbed motion attractive with respect to all variables $x_{1}, x_{2}, \ldots, x_{n}$ shall simply be called an attractive one.

Using the above terminology we can say that an unperturbed motion is asymptotically x_{j}-stable [1] if it is x_{j}-stable and attractive with respect to x_{j}. Below we shall use the following notation:

$$
\begin{array}{ll}
S(r)-\{\mathrm{x}:\|\mathrm{x}\|<r\} & (0<r \in R) \\
x\left(t ; t_{0}, F\right)=\left\{\mathrm { x } \left(t ; t_{0},\right.\right. & \left.\left.\mathbf{x}_{0}\right): \mathrm{x}_{0} \in F\right\} \quad\left(F \subset R^{n}\right)
\end{array}
$$

2. The mapping $S(r) \rightarrow R^{n}$ defined by the formula $\mathrm{x}_{0} \rightarrow \mathrm{x}\left(t ; t_{0}, \mathrm{x}_{0}\right)$ is, for any fixed $t, t_{0}\left(0 \leqslant t_{0} \leqslant t\right)$, a diffeomorphism the Jacobian of which satisfies the following differential equation [2,3]:

$$
\frac{\partial}{\partial t} J\left(x_{0} ; t, t_{0}\right)=\sum_{i=1}^{n}\left(\frac{\partial X_{i}(t, x)}{\partial x_{i}}\right)_{x=x\left(t ; t_{0}, x_{0}\right)} J\left(x_{0} ; t, t_{0}\right)
$$

when $t \geqslant t_{0}$. This yields the relation

$$
\begin{equation*}
J\left(\mathbf{x}_{0} ; t, t_{0}\right)=\exp \left[\int_{t_{0}}^{t}\left(\sum_{i=1}^{n} \frac{\partial X_{i}(s, \mathbf{x})}{\partial x_{i}}\right)_{\mathbf{x}=\mathbf{x}\left(s ; t_{0}, x_{0}\right)} d s\right] \tag{2.1}
\end{equation*}
$$

which represents a generalization of the Liouville formula for the systems of nonlinear equations.

Theorem. Assume that a neighborhood of the coordinate origin exists such that all solutions of the system (1.1) originating in this neighborhood are uniformly bounded, i.e. numbers $l>0$ and $L>0$ can be found such that

$$
\begin{equation*}
x(t ; 0, S(l) \subset S(L) \quad(t \geqslant 0) \tag{2.2}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim \sup _{t \rightarrow \infty} \int_{0}^{t} \min \left\{\sum_{i=1}^{n} \frac{\partial X_{i}(s, \mathbf{x})}{\partial x_{i}}:\|\mathbf{x}\| \leqslant L\right\} d s>-\infty \tag{2,3}
\end{equation*}
$$

then the zero solution of the system (1.1) has no attractive property with respect to any of the variables $x_{1}, x_{2}, \ldots, x_{n}$ or, more accurately, the Lebesgue measures μ [E_{i}] of the sets

$$
E_{i}=\left\{\mathbf{x}_{0}:\left\|\mathbf{x}_{0}\right\|<l, \quad \lim _{t \rightarrow \infty} x_{i}\left(t ; 0, x_{0}\right)=0\right\}
$$

($i=1,2, \ldots, n$) are equal to zero.
Proof. By virtue of the condition (2.3) and relation (2.1) a sequence $0 \leqslant t_{1} \leqslant$ $\ldots \leqslant t_{k} \leqslant \ldots$ and a constant C exist such that $t_{k} \rightarrow \infty$ when $k \rightarrow \infty$ and the inequality

$$
\begin{align*}
& \mu\left[x\left(t_{k} ; 0, F\right)\right]=\int_{x\left(t_{k} ; 0, F\right)} \ldots \int_{\mathcal{F}} d x_{1} \ldots d x_{n}= \tag{2.4}\\
& \quad \int \ldots \int J\left(\mathbf{x}_{0} ; t_{k}, 0\right) d x_{01} \ldots d x_{0 n} \geqslant \exp [C] \mu[F] \quad(k=1,2, \ldots)
\end{align*}
$$

holds for any open measurable set $F \subset S(l)$. The sets

$$
H_{m}^{k}=\left\{\mathbf{x}_{0}:\left\|\mathbf{x}_{0}\right\|<l,\left|x_{i}\left(t ; 0, \mathbf{x}_{0}\right)\right|<\frac{1}{k} \text { при } m \leqslant t \leqslant m+1\right\}
$$

are open for any fixed $i(1 \leqslant i \leqslant n)$ (see [2]), therefore the set

$$
E_{i}=\bigcap_{k=1}^{\infty}\left(\bigcup_{j=1}^{\infty} \bigcap_{m=j}^{\infty} H_{m}^{k}\right)
$$

is Lebesgue measurable.
Let us assume that the theorem is incorrect, i.e. that there exists $j(1 \leqslant j \leqslant n)$ such that $\mu\left[E_{\mathrm{y}}\right]>0$. Then using a theorem due to D. F. Egorov [4] we can find a measurable set $E^{*} \subset E_{j}$ the measure of which satisfies the inequality $\mu\left[E^{*}\right]>\mu\left[E_{j}\right] / 2$ and on which $x_{j}\left(t ; 0, \mathbf{x}_{0}\right) \rightarrow 0$ uniformly in \mathbf{x}_{0} when $t \rightarrow \infty$,i.e. for any $\varepsilon>0$, T (e) can be found such that $t>T(\varepsilon)$ and $\mathrm{x}_{0} \in E^{*}$ implies the inclusion

$$
\begin{align*}
& \mathbf{x}\left(t ; 0, \mathbf{x}_{0}\right) \in M(\varepsilon) \tag{2,5}\\
& M(\varepsilon)=S(L) \cap\left\{\mathbf{y}:\left|y_{j}\right|<\varepsilon\right\}
\end{align*}
$$

Since $t_{k} \rightarrow \infty$, a natural number $k(\varepsilon)$ can be found such that $t_{k(\varepsilon)}>T(\varepsilon)$. Let us introduce the notation

$$
F(\varepsilon)=x\left(0 ; t_{k(\varepsilon)}, \quad M(\varepsilon)\right) \cap S(l)
$$

By virtue of (2.5) we have $E^{*} \subset F(\varepsilon)$, therefore $\mu[F(\mathrm{e})] \geqslant \mu\left[E_{j}\right] / 2$. Using
now (2.4), we obtain the following estimate:

$$
\begin{align*}
& \mu[M(\varepsilon)] \geqslant \mu\left[x\left(t_{k(\varepsilon)} ; 0, F(\varepsilon)\right)\right] \geqslant \tag{2.6}\\
& \quad \quad \exp \left[C!\mu[F(\varepsilon)] \geqslant \exp [C] \mu\left[E_{j}\right] / 2>0\right.
\end{align*}
$$

On the other hand, we have the obvious relation

$$
\lim _{\varepsilon \rightarrow 0+} \mu[M(\varepsilon)]=0
$$

which contradicts the estimate (2.6) thus proving the theorem.
Corollary 1. If the zero solution of the system (1.1) is stable and the inequality (2.3) holds for sufficiently small $L>0$, then the zero solution of (1.1) has no attraction property towards any of the variables x_{i}; to express it more accurately, $\mu\left[E_{i}\right]=$ $0(i=1,2, \ldots, n)$.
Now let the following arbitrary (nonconservative) Hamiltonian system be given

$$
\begin{equation*}
q_{i}=\frac{\partial H(t, \mathbf{q}, \mathbf{p})}{\partial p_{i}}, \quad \stackrel{p_{i}}{\cdot}=-\frac{\partial H(t, \mathbf{q}, \mathbf{p})}{\partial q_{i}} \quad(i=1,2, \ldots, n) \tag{2.7}
\end{equation*}
$$

and let us assume that the Hamiltonian function $H(t, \mathbf{q}, \mathbf{p}):[0, \infty) \times R^{n} \times R^{n} \rightarrow R$ is continuous together with its second partial derivatives in q_{i} and p_{j}. Let the system (2.7) have a solution $\mathbf{q}=\mathbf{p}=\mathbf{0}$ which we shall call the position of equilibrium.

Corollary 2. If a neighborhood of the position of equilibrium $\mathbf{q}=\mathbf{p}=0$ of the system (2.7) exists in the $2 n$-dimensional space of the variables \mathbf{q}, \mathbf{p} such that all solutions originating in this neighborhood are uniformly bounded, i.e. numbers $l>0$ and $L>0$ exist such that $\left\|\mathrm{q}_{0}\right\|^{2}+\left\|\mathbf{p}_{0}\right\|^{2} \leqslant l^{2}$ implies the inequality

$$
\begin{equation*}
\left\|\mathbf{q}\left(t ; 0, \mathbf{q}_{0}, \mathbf{p}_{0}\right)\right\|^{2}+\left\|\mathbf{p}\left(t ; 0, \mathbf{q}_{0}, \mathbf{p}_{0}\right)\right\|^{2} \leqslant L^{2} \tag{2.8}
\end{equation*}
$$

for all $t \geqslant 0$ (in particular when this position of equilibrium $\mathbf{q}=\mathbf{p}=0$ is stable), then the position of equilibrium has no attraction property with respect to any of the variables q_{i}, p_{i}, or more accurately, the Lebesgue measures of the sets

$$
\begin{aligned}
& \binom{Q_{i}}{P_{i}}=\left\{\left(\mathbf{q}_{0}, \mathbf{p}_{0}\right) \in R^{2 n}:\left\|\mathbf{q}_{0}\right\|^{2}+\right. \\
& \left.\quad\left\|\mathbf{p}_{0}\right\|^{2}<l^{2}, \lim _{t \rightarrow \infty}\binom{q_{i}}{p_{i}}\left(t ; 0, \mathbf{q}_{0}, \mathbf{p}_{0}\right)=0\right\}
\end{aligned}
$$

$(i=1,2, \ldots, n)$ are all equal to zero.
Note. The equation

$$
\begin{equation*}
x^{\bullet}+a(t) x=0 \quad(t \geqslant 0, x \in R) \tag{2.9}
\end{equation*}
$$

shows that the condition (2.8) in Corollary 2 is essential. Setting $q=x$ and $p=x^{\circ}$, we can write (2.9) in the form of the Hamiltonian system (2.7) with the function H (t, q, $p)=\left(a(t) q^{2}+p^{2}\right) / 2$. The solution $x=x^{*}=0$ of (2.9) cannot be attractive irrespective of what the function $a(t)$ is. On the other hand, the problem of the conditions under which all solutions of (2.9) tend to zero as $t \rightarrow \infty$, or setting it differently, when the solution $x=x^{\text {. }}=0$ of (2.9) is attractive (in the whole) with respect to the coordinate x, has been a subject of study for a long time. A number of conditions guaranteeing this property are known (see Sect, 5.5 of [5]). It follows that the rejection of the condition (2.8) invalidates Corollary 2.
3. As an example, we consider the motion of a pendulum consisting of a material point suspended by a thread the length of which varies in accordance with an arbitrarily
stated law $l=l(t)\left(l(t) \geqslant l_{0}>0\right)$. We denote by θ the angle formed by the thread with the vertical. In this case the Lagrange equation has the form

$$
\begin{equation*}
\left(l^{2}(t) \theta^{\cdot}\right)+g l(t) \sin \theta=0 \quad(-\pi / 2<\theta<\pi / 2) \tag{3.1}
\end{equation*}
$$

Consider the "normalized energy"

$$
\begin{equation*}
V=V\left(t, \theta, \theta^{*}\right)=\frac{l(t)}{g}\left(\theta^{\circ}\right)^{2}+2(1-\cos \theta) \tag{3.2}
\end{equation*}
$$

By virtue of Eq. $(3,1)$ we can write the following estimate for the derivative V^{\prime} :

Assume that

$$
\begin{equation*}
V^{\cdot}\left(t, \theta, \theta^{*}\right)=-\frac{3}{g} l^{\cdot}(t)\left(\theta^{\cdot}\right)^{2} \leqslant\left[\frac{3 l^{*}(t)}{l(t)} l(t)\right]-V\left(t, \theta, \theta^{\cdot}\right) \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
L=\int_{0}^{\infty}\left[(\ln l(t))^{\cdot}\right]-d t<\infty \tag{3.4}
\end{equation*}
$$

Then any one solution $\theta(t)$ of (3.1) satisfies the inequality

$$
\begin{equation*}
v(t)=V\left(t, \theta(t), \theta^{\cdot}(t)\right) \leqslant v\left(t_{0}\right) \exp [3 L] \tag{3.5}
\end{equation*}
$$

Since $(1-\cos \theta) / \theta^{2} \rightarrow 1 / 2$ as $\theta \rightarrow 0$, for any $\sigma>0$ and $t_{0} \geqslant 0$, there exist $k>0$ and $K\left(t_{0}\right)$ such that

$$
\begin{aligned}
& V\left(t, \theta, \theta^{\cdot}\right) \geqslant k\left(\theta^{2}+\left(\theta^{\cdot}\right)^{2}\right) \\
& V\left(t_{0}, \theta, \theta^{*}\right) \leqslant K\left(t_{0}\right)\left(\theta^{2}+\left(\theta^{\cdot}\right)^{2}\right) \\
& \left(t \geqslant 0, \theta^{\cdot} \in R, \quad 0 \leqslant|\theta|<\pi / 2-\sigma\right)
\end{aligned}
$$

If $\varepsilon>0$ and

$$
\theta_{0}{ }^{2}+\left(\theta_{\sigma^{\prime}}\right)^{2}<\varepsilon \frac{k}{K\left(t_{0}\right) \exp [3 L]}
$$

then by virtue of (3.5) we have the inequality

$$
\left[\theta\left(t ; t_{0}, \theta_{0}, \theta_{0} \cdot\right)\right]^{2}+\left[\theta^{\cdot}\left(t ; t_{0}, \theta_{0}, \theta_{0}\right)\right]^{2}<\varepsilon \quad\left(t \geqslant t_{0}\right)
$$

i. e. the condition (3.4) entails the stability of the unperturbed motion $\theta=\theta^{\circ}=0$.

We note that the condition (3.4) obviously holds when the function $l(t)\left(l(t) \geqslant l_{0}>0\right)$ increases or decreases, at sufficiently large values of t. If an unbounded sequence of the time instances $r_{1}<s_{1}<\ldots<r_{k}<s_{k}<\ldots$ is such that the function $l(t)$ decreases on the intervals $\left[r_{k}, s_{k}\right]$ and increases on the intervals $\left[s_{k}, r_{k+1}\right](k=1,2, \ldots)$, then the condition (3.4) is equivalent to the inequality

$$
\prod_{k=1}^{\infty}\left(l\left\langle r_{k}\right) / l\left(s_{k}\right)\right)<\infty
$$

Let us find for what function $l(t)$ the unperturbed motion $\theta=\theta^{\circ}=0$ is attractive with respect to the angle θ. A simple computation shows that when the system is equivalent to (3.1), the condition (2.3) is equivalent to the inequality $\lim \inf _{t \rightarrow \infty} l(t)<\infty$. Using Corollary 1 we find that if the function $l(t)$ is bounded and satisfies the condition (3.4), then the unperturbed motion $\theta=\theta^{\circ}=0$ cannot be attractive (and hence asymptotically stable) neither with respect to the angle θ, nor with respect to the angular velocity θ°.

Let us consider the case when the function $l(t)$ is unbounded; in particular let us assume that

$$
\begin{equation*}
l(t)=l_{0}+c t^{\alpha} \quad\left(0<l_{0}, c, \alpha=\text { const }\right) \tag{3.6}
\end{equation*}
$$

We shall show that when $0<\alpha \leqslant 2$, the unperturbed motion $\theta=\theta^{\circ}=0$ is attractive with respect to the angle θ, i.e. all solutions of (3.1) defined on the interval $\left[t_{0}, \infty\right)$ tend to zero as $t \rightarrow \infty$.

Assume that the solution $\theta(t)$ is nonoscillatory. In this case it varies monotonously at sufficiently large values of t and tends to a finite limit v, since all solutions are bounded. Let us assume that $v \neq 0$, e.g. $v>0$. Integrating Eq. (3.1) twice from a sufficiently large value T_{0}, we obtain the estimate

$$
\theta(t) \leqslant \theta\left(T_{0}\right)+l\left(T_{0}\right)\left|\theta\left(T_{0}\right)\right| \int_{T_{0}}^{t}\left(l_{0}+c s^{\alpha}\right)^{-2} d s-c_{1} \sin v \int_{T_{0}}^{t} s^{1-x} d s \rightarrow-\infty(t \rightarrow \infty)
$$

which contradicts the fact that the function $\theta(t)$ is bounded, and hence $v=0$.
Let us now assume that the solution $\theta(t)$ oscillates, i.e. a sequence $t_{1}<t_{2}<\ldots<$ $t_{k}<\ldots$ exists for which

$$
\begin{equation*}
\theta\left(t_{k}\right)=0 \quad(k=1,2, \ldots), \quad \lim _{k \rightarrow \infty} t_{k}=0 \tag{3.7}
\end{equation*}
$$

Setting

$$
p(t)=\left(l_{0}+c t^{\alpha}\right)^{2}, \quad q(t)=g\left(l_{0}+c t^{\alpha}\right)
$$

we consider the following auxiliary Liapunov function (see [6]):

$$
W=W\left(t, \theta, \theta^{\cdot}\right)=d V+\frac{\pi}{2} \frac{d^{*}}{q} p \theta \theta^{\circ}-\frac{\pi}{4}\left(\frac{d}{q}\right) p \theta^{2}
$$

where $d=d(t)$ is a thrice continuously differentiable function on the interval $[0, \infty)$, By virtue of (3.1), the derivative of W has the form

$$
\begin{align*}
& W^{\cdot}=\frac{p}{q}\left(\theta^{\cdot}\right)^{2}\left[\left(1+\frac{\pi}{2}\right) d^{\cdot}-d \frac{(p q)^{\cdot}}{p q}\right]-\frac{\pi}{4}\left(\left(\frac{d^{\prime}}{q}\right)^{\cdot} p\right)^{\cdot} \theta^{2}+ \tag{3.8}\\
& \quad d^{\cdot}\left[2(1-\cos \theta)-\frac{\pi}{2} \theta \sin \theta\right]
\end{align*}
$$

Now $l^{\prime}(t) \geqslant 0$, therefore from (3.3) we see that $\theta(t)=V\left(t, \theta(t), \theta^{\cdot}(t)\right) \searrow \lambda \geqslant 0$ as $t \rightarrow \infty$.

It is sufficient to show that $\lambda=0$. Assume the opposite, i.e. that $\lambda>0$. Then for every $\varepsilon>0$ there exists $T(\varepsilon)$ such that

$$
\begin{equation*}
\lambda \leqslant v(t) \leqslant(1+e) \lambda \quad(t \geqslant T(\varepsilon)) \mid \tag{3.9}
\end{equation*}
$$

Integrating (3.8) from $T(\varepsilon)$ to $\left.i_{k} \geqslant T(\varepsilon)\right)$ and using (3.7), we obtain

$$
\begin{aligned}
& d\left(t_{k}\right) v\left(t_{k}\right) \leqslant O(1)+\int_{t}^{t_{k}} d \cdot\left[1+\frac{\pi}{2}-\frac{d}{d^{*}} \frac{(p q)^{-}}{p q}\right]_{+} v d t+\frac{\pi}{4} \int_{r}^{t_{k}}\left[\left(\left(\frac{d^{\prime}}{q}\right)^{\cdot} p\right)_{-}^{(3.10)}\right]_{(k \rightarrow \infty)}^{\theta^{2} d t} \\
& \text { Assume now that } \delta(t)=t^{8} \text {, where }
\end{aligned}
$$

$$
\delta=\delta(\alpha)=\left\{\begin{aligned}
\min (1 / 2,5 \alpha / \pi), & 0<\alpha<2 \\
3, & \alpha=2
\end{aligned}\right.
$$

Then

$$
\begin{equation*}
\mu=\lim _{t \rightarrow \infty} \frac{d(p q)}{d^{(}(p q)}=\lim _{t \rightarrow \infty} \frac{3 \alpha c t^{\alpha}}{\delta\left(l_{0}+c t^{\alpha}\right)}=\frac{3 \alpha}{\delta}>\frac{\pi}{2} \tag{3.11}
\end{equation*}
$$

To obtain the required contradiction from (3.10), we must estimate the integral

$$
I=I(t ; \alpha, \delta)=\frac{1}{g} \int_{1}^{t}\left[\left(\left(\frac{\delta s^{\delta-1}}{l_{0}+c s^{\alpha}}\right)^{\bullet}\left(l_{0}+c s^{\alpha}\right)^{2}\right)\right]_{-} d s
$$

For $0<\alpha<2$ we have

$$
\begin{aligned}
& I(t ; \alpha, \delta) \leqslant \frac{1}{g} \frac{\delta c[(\delta-1-\alpha)(\delta+\alpha-2)]-}{\delta+\alpha-2}\left(i^{\delta+\alpha-2}-1\right)=0\left(t^{\delta}\right) \quad(t \rightarrow \infty)(3.12) \\
& I(t ; 2,3) \equiv 0
\end{aligned}
$$

Using the relations (3.9)-(3.12), we obtain the estimate

$$
\lambda t_{k}^{\delta}=0(1)+\left[1-\frac{\mu-\pi / 2}{2}\right]_{+}(1+\varepsilon) \lambda t_{k}^{\delta}+o\left(t_{k}^{\delta}\right) \quad(k \rightarrow \infty)
$$

since the solution $\theta(t)$ is bounded. When $k \rightarrow \infty$, the above estimate yields the inequality

$$
1 \leqslant\left[1-\frac{1}{2}\left(\mu-\frac{\pi}{2}\right)\right]_{+}(1+\varepsilon)
$$

which, by virtue of (3.11), contradicts the assumption that $\varepsilon>0$ is arbitrary. This proves that when $0<\alpha \leqslant 2$, all solutions $\theta(t)$ tend to zero as $t \rightarrow \infty$.

Let us now consider the case when $\alpha>2$. Integrating Eq. (3.1) twice, we obtain the following estimate for the solution $\theta(t)=\theta\left(t ; t_{0}, \theta_{0}, 0\right)\left(\theta_{0}>0\right)$:

$$
\theta(t)=\theta_{0}-\int_{t_{0}}^{t} \frac{1}{p(s)} \int_{t_{0}}^{s} q(\tau) \sin \theta(\tau) d \tau d s \geqslant \theta_{0}-c_{2} \int_{t_{0}}^{\infty} s^{1-\alpha} d s \quad\left(0<c_{2}=\text { const }\right)
$$

From this it follows that for any $0_{0}\left(0<\left|\theta_{0}\right|<\pi / 2\right)$ a $t_{0} \geqslant 0$ exists such that

$$
\begin{equation*}
\lim \inf _{t \rightarrow \infty}\left|\theta\left(t ; t_{0}, \theta_{0}, 0\right)\right|>0 \tag{3,13}
\end{equation*}
$$

and this constitutes a proof of the following assertions:

1) if the pendulum length satisfies the condition (3.4), then the unperturbed motion $\theta=\theta^{\circ}=0$ is stable;
2) if the pendulum length $l(t)$ is bounded and satisfies (3.4), then the unperturbed motion cannot be attractive (and hence asymptotically stable) with respect to the angle θ, nor with respect to the angular velocity 0 ;
3) if the pendulum length varies according to the rule (3.6), then (a) for $0<\alpha \leqslant 2$, the unperturbed motion is asymptotically stable with respect to θ and all solutions θ (t; $t_{0}, \theta_{0}, \theta_{0}{ }^{\circ}$) of Eq. (3.1) defined on the interval [t_{0}, ∞) tend to zero as $t \rightarrow \infty$, and (b) when $\alpha>2$ for any $\theta_{0}\left(0<\left|\theta_{0}\right|<\pi / 2\right)$ there exists $t_{0} \geqslant 0$ such that the solution $\theta\left(t ; t_{0}, \theta_{0}, 0\right)$ possesses the property (3.13).

The author thanks V.V. Rumiantsev for supervising this work.

REFERENCES

1. Oziraner, A.S. and Rumiantsev,V.V.. The method of Liapunov functions in the stability problem for motion with respect to a part of the variables. PMM Vol. 36, № 2, 1972.
2. Nemytskii, V.V. and Stepanov, V.V., Quantitative Theory of Differential Equations. (English translation), Princeton Univ. Press, Princeton, N.J., 1960.
3. Kostiukovskii, Iu. M. - L. , On an idea of Chetaev. PMM Vol. 37, № 1, 1973.
4. Kolmogorov, A. N. and Fomin, S. V., Elements of the Theory of Functions and Functional Analysis. Moscow, "Nauka", 1972.
5. Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. Berlin, N. Y. , Springer Verlag, 1971.
6. Hatvanyi, L., On the asymptotic behavior of the solutions of $\left(p(t) x^{\prime}\right)^{\prime}+q(t) f(x)=$ 0 . Publication Math. Debrecen, Vol. 19, № № $1-4,1972$.
